Call it unique, eccentric or unconventional, but Honda has always had their own way of designing powertrains. Their transmissions are no different. For example, instead of planetary gearsets, they use constant-mesh, helical-cut gears, similar to a manual transmission, to obtain different gear ratios (Figure 1). Also, instead of pressure control via a solenoid, they pull the reaction directly from the torque converter stator shaft to work on the pressure regulator valve.

The Honda transmission is by far the simplest transmission to understand regarding powerflow, but by the same token, it’s one of the most complicated transmissions to understand regarding hydraulics… that is, until you learn the concept.

In the past, Honda transaxles used simple shift valves that fed pressure to an applying clutch, and directed release pressure through some form of orifice control valve. In fact, Honda 4-speeds still use this simple form of shift control.

With this design, the valving is responsible for controlling the overlap between the applying clutch and the releasing clutch (Figure 2). Proper clutch overlap is essential, because if you release a clutch too quickly, it’ll cause a flare; if you release it too slowly, it’ll cause a bindup.

During a typical shift, the releasing clutch must maintain fluid pressure long enough for the applying clutch to start to take hold. This intended overlap...
New SuperFlow TransDyno SF-66K
The convenience, reliability, versatility and ability to test virtually every transmission on the road, including the new Allison models. Handles hydraulically and electrically shifted transmissions, foreign and domestic, in FWD, RWD and AWD configurations. Monitors and tests virtually every aspect of transmission performance, under simulated road load conditions, before the transmission is installed … supported by the accuracy and superior documentation of the exclusive TDAC (Transmission Data Acquisition & Control) System.

SuperShifter
The NEW Durable In-Car Tester
Rugged design, solid state electronics, impact-resistant housing. Tests most late model transmissions. Controls the transmission from inside the car. Tests Solenoid current/resistance. Operator ID and Date/Time stamp. Embedded Bluetooth for external device connectivity.

Solenoid Testers
A must for testing the weakest link … six at a time. Easy to use.

Valve Body Testers
Precision test valve bodies, solenoids and pressure transducers with actual transmission pressures and heated oil under toughest simulated driving conditions.

TCRS Torque Converter Test and Rebuild Systems
Excellent profit center for transmission repair shops or stand-alone startups … and smartest way to save time and prevent costly comebacks.

Single Gun Auto Weld Aligner

Check out converters BEFORE you ship or install with HUB RUNOUT INSPECTION UNITS. And, ensure your converter quality (after welding) with AIR TEST STANDS for diagnosing leaks.

New! Improved! Torque Converter Balancer
now with automatic weight indexing, runout compensation mode, push button polishing and better accuracy and repeatability than ever before.

Hicklin Heavy-Duty Transmission Dynamometers
for trucks, mass transit, military, off-highway. In-line v-drive … angle drive … Allison, Renk, ZF, Voith and many others. Also ask about towing, axle and brake dynamometers for medium- to heavy-duty trucks; and torque converter dynamometers for testing under real-world, full-load conditions.

When you really need to know…

SuperFlow Dynos and Flowbenches
Recognized world leader in flowbench technology, plus a wide range of engine dynos, chassis dynos and software. Helps OEMs, high performance test engineers and engine builders take performance to the next level.

www.superflow.com
would cause a short bind, to pull the engine speed down to the necessary RPM for a typical, smooth upshift.

This concept isn’t unique to Honda transmissions; in fact, most transmissions require this form of hydraulic timing. One way manufacturers get around the overlap issue is to use sprags or roller clutches, which benefit shift quality by allowing a clutch to apply without timing the release of the previous clutch. Even though sprags or rollers do allow for smoother upshifts and downshifts, Honda transmissions typically only have one sprag (low), or in some cases none at all. This means practically every upshift and downshift must be timed precisely to ensure the smoothest shift possible.

No doubt, the typical 4-speed Honda transaxle works well and is relatively reliable. But it all comes down to shift quality, or shift feel. Honda transaxles tend not only to work like a manual transmission, but also to shift like one. Shifts are firm and noticeable, and that’s not necessarily acceptable among customers wanting an automatic transmission-equipped vehicle, especially since these transmissions are used in the Acura line, which competes with high-end luxury vehicles. It all comes down to shift quality, so the new era of Honda transmissions must control the shifts with greater accuracy. This is where the Clutch Pressure Control (CPC) circuit comes into play (Figure 3).

The CPC circuit is nothing new with Honda. The purpose of the CPC valve is to manipulate line pressure into a usable pressure for applying or releasing a clutch. Along with accumulators, the CPC circuits have direct influence over shift feel.

Early Honda transmissions had a throttle valve that would alter CPC pressure. This eventually evolved into electronic control of the CPC valve through a solenoid. Finally, the modern CPC circuits evolved into a system where multiple solenoids control the apply and release of the various clutches. This article will focus on the CPC circuits found in a typical 5-speed Honda/Acura transmission, such as the BYBA. At the heart of the CPC circuits are the CPC solenoids (Figure 4). These linear solenoids (as Honda would call them) are pulse width modulated (PWM) to physically control the position of their corresponding hydraulic spool valves. Unlike many traditional solenoids that modify oil pressure to move a valve, these solenoids press directly against the valve, and rely on a spring to return the valve to the rest position. The spool valves reduce modulator (solenoid feed) pressure to a CPC signal pressure that moves a CPC valve in the valve body.

There are actually three CPC solenoids in the late model 5-speed transmission, but for the most part, only CPC A and B are responsible for clutch apply and release. CPC C is primarily
used for torque converter clutch control. The CPC solenoids are mounted externally, and are conveniently located on top of the transmission.

The PCM pulses the CPC solenoids at 244 Hz (Figure 5). The typical duty cycle can vary between 40% – 50% when the solenoids are energized in 2nd and 4th gears. When the solenoids are de-energized, the PCM still modulates the solenoids between 10% – 25%.

During a shift, the duty cycle signals increase or decrease in unison to achieve the desired shift feel. This is all controlled by the PCM, which toggles power to modulate the solenoids.

The ground connection for the solenoids is located at the rear of the transmission, above the pressure switches.

When changing CPC solenoids, be careful to avoid getting debris into the transmission (Figure 6). Since the solenoids are mounted on top of the transmission, grit and grime tends to collect around them.

Pay attention to the feed pipes, which fit between the CPC solenoid and the transmission case; three feed pipes are about 0.710” long and have a cup-type filter pressed into each tube. In addition, there’s a longer 1.565” feed pipe that fits between the case and a vent section of the CPC solenoid body.

Even though the CPC solenoids have steel spool valves and are fed filtered ATF, the return springs are very soft, which makes them susceptible to sticking, especially after an overhaul.

<table>
<thead>
<tr>
<th>CPC Circuit A</th>
<th>CPC Circuit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Hydraulic</td>
</tr>
<tr>
<td>1st OFF Min N/A OFF</td>
<td>5th OFF Min N/A</td>
</tr>
<tr>
<td>1st PWM Min to Max</td>
<td>1st PWM Min to Max 2nd PWM Max to Min</td>
</tr>
<tr>
<td>2nd ON Max N/A* ON Min N/A</td>
<td>2nd PWM Max to Min</td>
</tr>
<tr>
<td>3rd OFF Min N/A* OFF Max N/A*</td>
<td>3rd PWM Min to Max 4th PWM Max to Min</td>
</tr>
<tr>
<td>4th ON Max N/A* ON Min N/A*</td>
<td>4th PWM Min to Max 5th PWM Max to Min</td>
</tr>
<tr>
<td>5th OFF Min N/A* OFF Max N/A*</td>
<td></td>
</tr>
</tbody>
</table>

* The shift valves direct line pressure to the clutches once they are in gear.
CPC solenoids A and B control their corresponding CPC valves located in the valve body. Each CPC valve either regulates line pressure and directs it to apply clutches, or they regulate clutch pressure release from the clutches that are disengaging.

CPC solenoid A is a normally-trapping solenoid, which means hydraulic pressure doesn’t pass through the solenoid when it’s de-energized. CPC solenoid B is a normally-passing solenoid, which means hydraulic pressure passes through the solenoid when it’s de-energized.

The strategy of the PCM involves modulating both solenoids either on or off together (Figure 7). For example, in first gear both CPC solenoids are off, which allows CPC A to generate minimum or no signal pressure and CPC B to generate maximum signal pressure. When the PCM commands a shift from first to second, both solenoids modulate on, which causes the CPC A to move from minimum to maximum pressure, and CPC B to move from maximum to minimum pressure.

During the shifts, CPC pressures are directed to the actual clutch elements through the action of the shift solenoids and shift valves. It basically comes down to this: During the shifts, CPC pressure is in complete control of applying and releasing clutch pressures. Then, after the shift, the shift valves direct line pressure to the necessary clutches. If a transmission holds all of its gears, but only exhibits issues during the shift, such as a flare or bind, the CPC circuit could likely be the culprit. (ins newxt cht)
Here’s an example of a typical shift from second to third. While reviewing the CPC chart for 2nd gear, notice that both CPC A and B are energized. The solenoids are preparing for either an upshift into 3rd or a downshift into 1st.

The CPC A circuit controls pressure to the 2nd and 4th clutches and the CPC B circuit controls pressure to the 3rd and 5th clutches. The manual valve applies line pressure to the first clutch when the transmission is in a drive range, and since the 5-speeds use a low sprag, it can remain applied.

While in second gear (Figure 8) with both solenoids energized, maximum CPC A pressure and minimum CPC B pressure stop at shift valve A. Line pressure from the manual valve is directed through shift valve C, to shift valve A, then finally to shift valve B before reaching the 2nd gear accumulator and clutch.

Notice solenoids A, B and C act on their corresponding shift valves. There are actually two other shift valves in this transmission — as well as many other valves — but to keep things simple, the schematics only show what’s needed for a shift.

The strategy of the PCM involves modulating both solenoids either on or off together.

Remember that Old-Time Service?
WIT distributes a complete line of quality new, used, & remanufactured automatic & standard transmission Parts. Service is the Cornerstone of our Company!

Whatever It Takes

800-940-0197

No programming required
Shift points and pressure adjustable, self-calibrating AccuLink TPS

Kit comes complete with hardware & instruction manual
Optional LCD display allows custom programming
Generates trouble codes & live data stream

For more information visit our web at www.compushift.com
FOR A DEALER IN YOUR AREA CALL TOLL FREE 877-740-3887

HGM Automotive Electronics, Inc.
Honda 5-Speed Clutch Pressure Control (CPC)

Once the conditions are right for a shift from 2nd to 3rd, (Figure 9) the PCM first turns shift solenoid A off. This shuts off clutch pressure to the CPC A circuit, which was waiting with maximum CPC pressure. Now CPC A can regulate the release of the 2nd clutch.

After the 2-3 shift, the CPC B circuit is directed to the 3rd clutch, pressure switch and accumulator. At this point, the CPC B circuit is in complete control of the 3rd clutch apply. The PCM will pulse the CPC B solenoid to increase 3rd clutch pressure at the desired rate.

During the shift, the PCM monitors engine speed, mainshaft speed, and secondary shaft speed to determine the quality of the shift. The PCM can adapt and change how the CPC solenoids react during a shift. Unfortunately, unlike many other manufacturers, Honda doesn’t provide adaptive values on their diagnostic scan tool, but they have many shift related DTC’s.

Once the shift is complete, the PCM energizes shift solenoid C, which shuttles shift valve C and directs line pressure to the 3rd clutch, accumulator and pressure switch.

While in third gear, both CPC solenoids are off, which means the CPC A circuit has minimum pressure and the CPC B circuit has maximum pressure, both prepared for the next upshift or downshift (Figure 10).

The PCM monitors the solenoid circuits continuously for proper electrical operation, such as open or short circuits in the solenoids or pressure switches. It monitors the vehicle, mainshaft and secondary shaft speeds to determine if the shifts are smooth and to make sure the clutches are holding. The following is a chart of DTC’s for shift-related failures:

<table>
<thead>
<tr>
<th>DTC</th>
<th>Description</th>
<th>Possible failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0731-</td>
<td>Problem with clutch or related hydraulic</td>
<td>Drain and inspect fluid to determine possibility of clutch failure. Honda</td>
</tr>
<tr>
<td>P0735</td>
<td>circuit</td>
<td>suggests draining the fluid through a paint strainer to catch contamination.</td>
</tr>
<tr>
<td>P0746</td>
<td>CPC solenoid valve A stuck OFF</td>
<td>Mechanically stuck valve or solenoid. Honda suggests checking operation by</td>
</tr>
<tr>
<td>P0747</td>
<td>CPC solenoid valve A stuck ON</td>
<td>activating the solenoid and observing its movement.</td>
</tr>
<tr>
<td>P0751</td>
<td>Shift solenoid A stuck OFF</td>
<td>Mechanically stuck valve or solenoid. Actuate solenoid and listen for click.</td>
</tr>
<tr>
<td>P0752</td>
<td>Shift solenoid A stuck ON</td>
<td>Mechanically stuck valve or solenoid. Actuate solenoid and listen for click.</td>
</tr>
<tr>
<td>P0756</td>
<td>Shift solenoid B stuck OFF</td>
<td>Mechanically stuck valve or solenoid. Actuate solenoid and listen for click.</td>
</tr>
<tr>
<td>P0757</td>
<td>Shift solenoid B stuck ON</td>
<td>Mechanically stuck valve or solenoid. Actuate solenoid and listen for click.</td>
</tr>
<tr>
<td>P0761</td>
<td>Shift solenoid C stuck OFF</td>
<td>Mechanically stuck valve or solenoid. Actuate solenoid and listen for click.</td>
</tr>
<tr>
<td>P0762</td>
<td>Shift solenoid C stuck ON</td>
<td>Mechanically stuck valve or solenoid. Actuate solenoid and listen for click.</td>
</tr>
<tr>
<td>P0776</td>
<td>CPC solenoid valve B stuck OFF</td>
<td>Mechanically stuck valve or solenoid. Honda suggests checking operation by</td>
</tr>
<tr>
<td>P0777</td>
<td>CPC solenoid valve B stuck ON</td>
<td>activating the solenoid and observing its movement.</td>
</tr>
<tr>
<td>P0780</td>
<td>Problem with shift control system</td>
<td>Check to make sure solenoid connectors didn’t get mixed up. Possible shift</td>
</tr>
<tr>
<td>P0962</td>
<td>Problem with CPC solenoid valve A circuit</td>
<td>Valve D stuck. Sets when PCM detects a downshift to 2nd instead of an upshift</td>
</tr>
<tr>
<td>P0963</td>
<td>Problem with CPC solenoid valve A circuit</td>
<td>from 3rd to 4th.</td>
</tr>
<tr>
<td>P0966</td>
<td>Problem with CPC solenoid valve B circuit</td>
<td>PCM detects low current, most likely from excessive resistance in the circuit or</td>
</tr>
<tr>
<td>P0967</td>
<td>Problem with CPC solenoid valve B circuit</td>
<td>PCM detects high current, most likely from low resistance in the circuit or</td>
</tr>
<tr>
<td>P0970</td>
<td>Problem with CPC solenoid valve C circuit</td>
<td>PCM detects low current, most likely from excessive resistance in the circuit or</td>
</tr>
<tr>
<td>P0971</td>
<td>Problem with CPC solenoid valve C circuit</td>
<td>PCM detects high current, most likely from low resistance in the circuit or</td>
</tr>
<tr>
<td>P0973</td>
<td>Shift valve A solenoid circuit open</td>
<td>PCM internal driver circuit detects an open in the solenoid circuit. Solenoids</td>
</tr>
<tr>
<td>P0974</td>
<td>Shift valve A solenoid circuit shorted</td>
<td>PCM internal driver circuit detects a short in the solenoid circuit. Solenoids</td>
</tr>
<tr>
<td>P0976</td>
<td>Shift valve B solenoid circuit open</td>
<td>PCM internal driver circuit detects an open in the solenoid circuit. Solenoids</td>
</tr>
<tr>
<td>P0977</td>
<td>Shift valve B solenoid circuit shorted</td>
<td>PCM internal driver circuit detects a short in the solenoid circuit. Solenoids</td>
</tr>
<tr>
<td>P0979</td>
<td>Shift valve C solenoid circuit open</td>
<td>PCM internal driver circuit detects an open in the solenoid circuit. Solenoids</td>
</tr>
<tr>
<td>P0980</td>
<td>Shift valve C solenoid circuit shorted</td>
<td>PCM internal driver circuit detects a short in the solenoid circuit. Solenoids</td>
</tr>
</tbody>
</table>

GEARS May/June 2007
While in second gear (Figure 8) with both solenoids energized, maximum CPC A pressure and minimum CPC B pressure stop at shift valve A.

Understanding the relationship of the CPC solenoids is invaluable when diagnosing shift issues with Honda transmissions. Think of the symptoms that a failed CPC solenoid or valve could cause, assuming, of course, that there’s no DTC and the transmission isn’t in failsafe. The following chart summarizes

Honda 5-Speed
2nd Gear

What does Morse® Hy-Vo® Chain Offer
You and Your Transmission Customers?

- Quality
- Technology
- Performance
- Application Coverage
- Technical Support
- Availability
- Packaging
- Value

Morse® Hy-Vo® Chain Offers You and Your Customers True Value and Complete Coverage for All Your Applications.

Call or write Carol Dupke Lee for a list of authorized Morse® product distributors and product information.
(248) 754-0182 Fax: (248) 754-0551
cdupke@morse.bwauto.com
Honda 5-Speed Clutch Pressure Control (CPC)

what might happen if there is an issue with one of the CPC circuits: (see chart to the right).

If these failures were total or complete failures, a DTC would more than likely set. But if the valves or the solenoid armature had intermittent failures, the problem might slip through detection criteria for the DTC.

As an experiment, I purposely failed the CPC circuits on a test vehicle (2002 Acura MDX); a DTC set immediately for a plugged CPC A circuit and the transmission went into failsafe. The CPC B circuit was a different story; a DTC never set, but the vehicle reacted with every symptom listed in the chart for CPC B pressure always low. With enough driving, the DTC was sure to set, but remember: this was a complete failure of the CPC circuit. Intermittent failures could cause the same symptoms while the PCM would attempt to adapt to the erratic operation.

Honda transmissions are out there by the millions, so it’s time to embrace these units with open arms. Although the reliability and quality of the Honda product is second to none, the advances they’ve made to improve shift quality have also left them susceptible to increased failures. With a solid understanding of the system, many of the shift issues make sense and come down to the basic electrical/hydraulic relationship.

One last note regarding the ever-so-popular Honda 5-speed: Honda recently increased their warranty on the following models to 7 years, 9 months, or 109,000 miles, whichever comes first.

- 1999-2002 3.2TL
- 2003 TL (except Type S) up to VIN 19UUA5...3A019556
- 2003 TL (Type S) up to VIN 19UUA5...3A0196061
- All 2001-2002 3.2 CL
- 2003 3.2 CL up to VIN 19UYA42..3A005203
- All 1999-2001 Odyssey
- All 2000-2001 Accord
- All 2000-2001 Prelude

Other than the noted vehicles, 2005-and-earlier Hondas have a 3-year, 36,000-mile warranty, and 2006-to-current Hondas have a 5-year, 60,000-mile warranty.

<table>
<thead>
<tr>
<th>Failure</th>
<th>Possible Components</th>
<th>Transmission Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC A pressure always high</td>
<td>• CPC valve stuck in max pressure
 • CPC solenoid always energized
 • CPC solenoid valve stuck on hydraulically</td>
<td>2nd gear start *
Harsh/bind 2-3, 3-4, 4-5
Harsh/bind 5-4, 4-3, 3-2</td>
</tr>
<tr>
<td>CPC A pressure always low</td>
<td>• CPC valve stuck in min pressure
 • CPC solenoid always de-energized
 • CPC solenoid valve stuck off hydraulically</td>
<td>Harsh 1-2
Flare on 2-3, 3-4, 4-5
Flare on 5-4, 4-3, 3-2</td>
</tr>
<tr>
<td>CPC B pressure always high</td>
<td>• CPC valve stuck in max pressure
 • CPC solenoid always de-energized
 • CPC solenoid valve stuck on hydraulically</td>
<td>Harsh/bind 2-3, 3-4, 4-5
Harsh/bind 5-4, 4-3, 3-2</td>
</tr>
<tr>
<td>CPC B pressure always low</td>
<td>• CPC valve stuck in min pressure
 • CPC solenoid always energized
 • CPC solenoid valve stuck off hydraulically</td>
<td>Flare on 2-3, 3-4, 4-5
Flare on 5-4, 4-3, 3-2</td>
</tr>
</tbody>
</table>

Figure 9

Honda 5-Speed 2nd to 3rd Gear

Figure 10

Honda 5-Speed 3rd Gear

GEARS May/June 2007
Ford Motor Company has launched an expanded Ford Powertrain Sales Call Center located in Dearborn, Michigan. Now, independent installers will be able to order Ford and Motorcraft® New and Remanufactured engines and transmissions through the Call Center. “We’re excited about the opportunity to provide a one-stop-shopping solution to our powertrain installers,” said Jeff Lombardi, FCSD Powertrain Product Marketing Manager. “With one call, our customers will get competitive price quotes and unparalleled product support from a factory-trained Call Center agent,” Lombardi said.

Toll-free Number Makes Ordering Easy

Powertrain installers will be able to order gas and diesel engines and transmissions by calling the Ford Powertrain Sales Call Center, toll-free at 1-800-392-7946. Hours are 8 a.m. to 8 p.m., ET, Monday through Friday. According to Lombardi, this expanded Call Center capability demonstrates Ford Powertrain’s commitment to delivering outstanding customer service to installers servicing Ford, Lincoln and Mercury vehicles. “We want to make it as easy as possible for our installer customers to do business with us,” said Lombardi.

Ford Motor Company Announces Expanded Call Center Service to Include Placing Orders

Call 1-800-392-7946 for your Ford powertrain needs

Total Value Package

The new Ford Motor Company Powertrain Call Center is part of the Total Value Package for Ford and Motorcraft® New and Remanufactured powertrain assemblies -- a combination of quality, value, and availability that few can match. This includes:

- 3-year/75,000-mile limited warranty on gas engines and transmissions; 2-year unlimited mileage, limited warranty on diesel engines*
- Factory technical support
- No-Risk Core Return, which provides a 100% refund regardless of damage
- Same or next-day delivery
- Competitive pricing
- Vehicle-specific part number application

*Ask your Call Center agent for warranty details.

Distribution Centers Located Across the Country

The Ford Powertrain Team works with 44 distribution centers and 130 Ford and Lincoln Mercury powertrain stocking Dealers coast-to-coast. This allows us to have 35,000 assemblies warehoused at any given time, ready to be shipped the day an order is placed, or the very next day. This ensures installers are able to use parts designed specifically for Ford, Lincoln and Mercury vehicles. It also demonstrates the Ford Powertrain Team’s complete dedication to installers and their customers. “We have a shared commitment with our installers to satisfy the customer,” says Lombardi. “It really is a win-win situation. Installers get the OE parts they need when they need them. Their customers get the best assemblies for their Ford, Lincoln and Mercury vehicles—Ford and Motorcraft® powertrain assemblies, which are the perfect fit every time.”